Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(18): 4297-4303, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37129465

RESUMO

While previous work has identified the conditions for preparing ultrastable single-component organic glasses by physical vapor deposition (PVD), little is known about the stability of codeposited mixtures. Here, we prepared binary PVD glasses of organic semiconductors, TPD (N,N'-Bis(3-methylphenyl)-N,N'-diphenylbenzidine) and m-MTDATA (4,4',4″-Tris[phenyl(m-tolyl)amino]triphenylamine), with a 50:50 mass concentration over a wide range of substrate temperatures (Tsub). The enthalpy and kinetic stability are evaluated with differential scanning calorimetry and spectroscopic ellipsometry. Binary organic semiconductor glasses with exceptional thermodynamic and kinetic stability comparable to the most stable single-component organic glasses are obtained when deposited at Tsub = 0.78-0.90Tg (where Tg is the conventional glass transition temperature). When deposited at 0.94Tg, the enthalpy of the m-MTDATA/TPD glass equals that expected for the equilibrium liquid at that temperature. Thus, the surface equilibration mechanism previously advanced for single-component PVD glasses is also applicable for these codeposited glasses. These results provide an avenue for designing high-performance organic electronic devices.

2.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37218703

RESUMO

X-ray scattering has been used to characterize the columnar packing and the π stacking in a glass-forming discotic liquid crystal. In the equilibrium liquid state, the intensities of the scattering peaks for π stacking and columnar packing are proportional to each other, indicating concurrent development of the two orders. Upon cooling into the glassy state, the π-π distance shows a kinetic arrest with a change in the thermal expansion coefficient (TEC) from 321 to 109 ppm/K, while the intercolumnar spacing exhibits a constant TEC of 113 ppm/K. By changing the cooling rate, it is possible to prepare glasses with a wide range of columnar and π stacking orders, including zero order. For each glass, the columnar order and the π stacking order correspond to a much hotter liquid than its enthalpy and π-π distance, with the difference between the two internal (fictive) temperatures exceeding 100 K. By comparison with the relaxation map obtained by dielectric spectroscopy, we find that the δ mode (disk tumbling within a column) controls the columnar order and the π stacking order trapped in the glass, while the α mode (disk spinning about its axis) controls the enthalpy and the π-π spacing. Our finding is relevant for controlling the different structural features of a molecular glass to optimize its properties.

3.
Nano Lett ; 23(5): 2009-2015, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36799489

RESUMO

Physical vapor deposition can be used to prepare highly stable organic glass systems where the molecules show orientational and translational ordering at the nanoscale. We have used low-dose four-dimensional scanning transmission electron microscopy (4D STEM), enabled by a fast direct electron detector, to map columnar order in glassy samples of a discotic mesogen using a 2 nm probe. Both vapor-deposited and liquid-cooled glassy films show domains of similar orientation, but their size varies from tens to hundreds of nanometers, depending on processing. Domain sizes are consistent with surface-diffusion-mediated ordering during film deposition. These results demonstrate the ability of low-dose 4D STEM to characterize a mesoscale structure in a molecular glass system which may be relevant to organic electronics.

4.
Mol Pharm ; 20(2): 1347-1356, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36668815

RESUMO

An amorphous drug-polymer salt (ADPS) can be remarkably stable against crystallization at high temperature and humidity (e.g., 40°C/75% RH) and provide fast release. Here, we report that process conditions strongly influence the degree of proton transfer (salt formation) between a drug and a polymer and in turn the product's stability and release. For lumefantrine (LMF) formulated with poly(acrylic acid) (PAA), we first show that the amorphous materials prepared by slurry conversion and antisolvent precipitation produce a single trend in which the degree of drug protonation increases with PAA concentration from 0% for pure LMF to ∼100% above 70 wt % PAA, independent of PAA's molecular weight (1.8, 450, and 4000 kg/mol). This profile describes the equilibrium for salt formation and can be modeled as a chemical equilibrium in which the basic molecules compete for the acidic groups on the polymer chain. Relative to this equilibrium, the literature methods of hot-melt extrusion (HME) and rotary evaporation (RE) reached much lower degrees of salt formation. For example, at 40 wt % drug loading, HME reached 5% salt formation and RE 15%, both well below the equilibrium value of 85%. This is noteworthy given the common use of HME and RE in manufacturing amorphous formulations, indicating a need for careful control of process conditions to ensure the full interaction between the drug and the polymer. This need arises due to the low mobility of macromolecules and the mutual hindrance of adjacent reaction sites. We find that a high degree of salt formation enhances drug stability and release. For example, at 50% drug loading, an HME-like formulation with 19% salt formation crystallized faster and released only 20% of the drug relative to a slurry-prepared formulation with 70% salt formation. Based on this work, we recommend slurry conversion as the method for preparing ADPS for its ability to enhance salt formation and continuously adjust drug loading. While this work focused on salt formation, the impact of process conditions on the molecular-level interactions between a drug and a polymer is likely a general issue for amorphous solid dispersions, with consequences on product stability and drug release.


Assuntos
Polímeros , Prótons , Polímeros/química , Sais , Química Farmacêutica/métodos , Solubilidade , Lumefantrina , Estabilidade de Medicamentos , Composição de Medicamentos/métodos
5.
Mol Pharm ; 19(9): 3350-3357, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35985030

RESUMO

X-ray photoelectron spectroscopy has been used to measure the surface concentration and the surface enrichment kinetics of a polymer in a glass-forming molecular liquid. As a model, the bulk-miscible system of maltitol-polyvinylpyrrolidone (PVP) was studied. The PVP concentration is significantly higher at the liquid/vapor interface than in the bulk by up to a factor of 170, and the effect increases with its molecular weight. At a freshly created liquid/vapor interface, the concentration of PVP gradually increases from the bulk value at a rate controlled by bulk diffusion. The polymer diffusion coefficient obtained from the kinetics of surface enrichment agrees with that calculated from viscosity and the Stokes-Einstein equation. Our finding allows prediction of the rate at which the surface composition equilibrates in an amorphous material after milling, fracture, and a change in ambient temperature.


Assuntos
Polímeros , Povidona , Vidro , Cinética , Polímeros/química , Povidona/química , Solubilidade
6.
Mol Pharm ; 19(8): 2962-2970, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816108

RESUMO

An amorphous material can have vastly higher mobility on the surface than in the bulk and, as a result, shows fast surface crystallization. Most amorphous materials contain multiple components, but the effect of composition on surface dynamics remains poorly understood. In this study, the surface mobility of amorphous indomethacin was measured using the method of surface-grating decay in the presence of moisture and the surfactant Tween 20. It is found that both components significantly enhance the surface mobility, and their effects are well described by the principle of concentration-temperature superposition (CTS); that is, the same surface dynamics is observed at the same Tg-normalized temperature T/Tg, where Tg is the composition-dependent glass transition temperature. For doped indomethacin showing CTS, the mechanism of surface evolution for a 1000 nm wavelength surface grating transitions from viscous flow at high temperatures to surface diffusion at low temperatures at 1.04 Tg. For the surfactant-doped system, the Tg used is the value for the surface layer that reflects the surface enrichment of the surfactant (measured by X-ray photoelectron spectroscopy). At a high surfactant concentration (>10% by weight), the surface-grating decay rate in the surface-diffusion regime is limited by the large, slow-diffusing surfactant molecules; in this case, CTS holds only for the viscous-flow regime. The CTS principle allows the prediction of the surface dynamics of multicomponent amorphous materials.


Assuntos
Indometacina , Tensoativos , Cristalização , Excipientes , Indometacina/química , Temperatura , Temperatura de Transição
7.
J Am Chem Soc ; 144(26): 11638-11645, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35735940

RESUMO

The molecules at the surface of a liquid have different organization and dynamics from those in the bulk, potentially altering the rate of crystal nucleation and polymorphic selection, but this effect remains poorly understood. Here we demonstrate that nucleation at the surface of a pure liquid, d-arabitol, is vastly enhanced, by 12 orders of magnitude, and selects a different polymorph. The surface effect intensifies with cooling and can be inhibited by a dilute, surface-active second component. This phenomenon arises from the anisotropic molecular packing at the interface and its similarity to the surface-nucleating polymorph. Our finding is relevant for controlling the crystallization and polymorphism in any system with a significant interface such as nanodroplets and atmospheric water.


Assuntos
Cristalização , Anisotropia , Transição de Fase
8.
J Chem Phys ; 156(8): 084504, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35232205

RESUMO

X-ray scattering has been used to characterize glassy itraconazole (ITZ) prepared by cooling at different rates. Faster cooling produces ITZ glasses with lower (or zero) smectic order with more sinusoidal density modulation, larger molecular spacing, and shorter lateral correlation between the rod-like molecules. We find that each glass is characterized by not one, but two fictive temperatures Tf (the temperature at which a chosen order parameter is frozen in the equilibrium liquid). The higher Tf is associated with the regularity of smectic layers and lateral packing, while the lower Tf with the molecular spacings between and within smectic layers. This indicates that different structural features are frozen on different timescales. The two timescales for ITZ correspond to its two relaxation modes observed by dielectric spectroscopy: the slower δ mode (end-over-end rotation) is associated with the freezing of the regularity of molecular packing and the faster α mode (rotation about the long axis) with the freezing of the spacing between molecules. Our finding suggests a way to selectively control the structural features of glasses.

9.
Mol Pharm ; 19(2): 654-660, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35060740

RESUMO

Surfactants are commonly incorporated into amorphous formulations to improve the wetting and dissolution of hydrophobic drugs. Using X-ray photoelectron spectroscopy, we find that a surfactant can significantly enrich at the surface of an amorphous drug, up to 100% coverage, wihout phase separation in the bulk. We compared four different surfactants (Span 80, Span 20, Tween 80, and Tween 20) in the same host acetaminophen and the same surfactant Span 80 in four different hosts (acetaminophen, lumefantrine, posaconazole, and itraconazole). For each system, the bulk concentrations of the surfactants were 0, 1, 2, 5, and 10 wt %, which cover the typical concentrations in amorphous formulations, and component miscibility in the bulk was confirmed by differential scanning calorimetry. For all systems investigated, we observed significant surface enrichment of the surfactants. For acetaminophen containing different surfactants, the strongest surface enrichment occurred for the most lipophilic Span 80 (lowest HLB), with nearly full surface coverage. For the same surfactant Span 80 doped in different drugs, the surface enrichment effect increases with the hydrophilicity of the drug (decreasing log P). These effects arise because low-surface-energy molecules (or molecular fragments) tend to enrich at a liquid/vapor interface. This study highlights the potentially large difference between the surface and bulk compositions of an amorphous formulation. Given their high mobility and low glass transition temperature, the surface enrichment of surfactants in an amorphous drug can impact its stability, wetting, and dissolution.


Assuntos
Polissorbatos , Tensoativos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia Fotoeletrônica , Polissorbatos/química , Solubilidade , Tensoativos/química
10.
J Pharm Sci ; 110(11): 3670-3677, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34371071

RESUMO

Lumefantrine (LMF), a high-mobility and easy-to-crystallize WHO drug for treating malaria, can form an amorphous salt with poly(acrylic acid) (PAA) that is remarkably stable against crystallization at high humidity and temperature and has fast dissolution rate. The amorphous salt up to 75% drug loading was synthesized under a mild slurry condition easily implemented in basic facilities for global health. Salt formation was confirmed by IR spectroscopy and the much elevated glass transition temperature. At 50% drug loading, the amorphous salt resists crystallization for at least 18 months under the highly stressful condition of 40 °C and 75% RH. In contrast, the dispersion containing neutral LMF in PVP fully crystallized in 4 d and the dispersion in HPMCAS, a weak polyelectrolyte of lower charge density than PAA, crystallized by 50% in 7 d. The amorphous salt at 50% drug loading showed much faster dissolution than crystalline LMF: In SGF, the area under the curve (AUC) was 30 times larger within the gastric emptying time (4 h); in FaSSIF, the enhancement was even larger - by 200 times. Nanodroplets were detected during the dissolution in SGF, possibly accounting for the apparent enhancement of dissolution rate. The LMF-PAA example as a challenging case, along with the previously reported clofazimine-PAA, demonstrates the general utility of amorphous drug-polymer salts to achieve high stability under tropical conditions and enhanced dissolution and bioavailability.


Assuntos
Preparações Farmacêuticas , Polímeros , Estabilidade de Medicamentos , Lumefantrina , Solubilidade , Clima Tropical
11.
Soft Matter ; 16(8): 2025-2030, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31998921

RESUMO

Liquid crystals (LCs) undergo fast phase transitions, almost without hysteresis, leading to the notion that it is difficult to bypass LC transitions. However, recent work on itraconazole has shown that a nematic-to-smectic phase transition can be frustrated or avoided at moderate cooling rates. At each cooling rate, the highest smectic order obtained is determined by the kinetic arrest of the end-over-end molecular rotation. We report that the same phenomenon occurs in the system saperconazole, an analog of itraconazole where each of the two Cl atoms is replaced by F. Saperconazole has a wider temperature range over which smectic order can develop before kinetic arrest, providing a stronger test of the previous conclusion. Together these results indicate a general principle for controlling LC order in organic glasses for electronic applications.

12.
Mol Pharm ; 16(3): 1305-1311, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30668120

RESUMO

As a result of its higher molecular mobility, the surface of an amorphous drug can grow crystals much more rapidly than the bulk, causing poor stability and slow dissolution of drug products. We show that a nanocoating of chitosan (a pharmaceutically acceptable polymer) can be deposited on the surface of amorphous indomethacin by electrostatic deposition, leading to significant improvement of physical stability, wetting by aqueous media, dissolution rate, powder flow, and tabletability. The coating condition was chosen so that the positively charged polymer deposits on the negatively charged drug. Chitosan coating is superior to gelatin coating with respect to stability against crystallization and agglomeration of coated particles.


Assuntos
Química Farmacêutica/métodos , Quitosana/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos/fisiologia , Estabilidade de Medicamentos , Indometacina/química , Polímeros/química , Cristalização , Interações Medicamentosas , Gelatina/química , Umidade/efeitos adversos , Pós/química , Solubilidade , Eletricidade Estática , Propriedades de Superfície , Comprimidos/química , Resistência à Tração , Difração de Raios X
13.
Mol Pharm ; 16(1): 318-326, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30511872

RESUMO

We aim to understand the potential impact of a modest chemical modification of a drug molecule on the downstream design of its amorphous solid dispersion (ASD) formulation. To this end, we used sorafenib (SOR) and its fluorinated form, regorafenib (REG), as model drugs, to assess the impact of a single hydrogen substitution by fluorine on the molecular interaction and miscibility between drug and PVP or PVP-VA, two commonly used polymers for ASDs. In this study, we observed that the Tg values of PVP or PVP-VA based ASDs of SOR deviated positively from the Gordon-Taylor prediction, which assumes ideal mixing, yet the Tg of REG ASDs deviated negatively from or matched well with the ideal mixing model, suggesting much stronger drug-polymer interactions in SOR ASDs compared with the REG ASDs. Using solution NMR and computational methods, we proved that a six-member-ring formed between the carbonyl groups on the polymers and the uramido hydrogen of SOR or REG, through intermolecular hydrogen bonding. However, steric hindrance resulting from fluorination in REG caused weaker interaction between REG-polymer than SOR-polymer. To further confirm this mechanism, we investigated the molecular interactions of other two uramido-containing model compounds, triclocarban (TCC) and gliclazide (GCZ), with PVP. We found that TCC but not GCZ formed a hexatomic ring with PVP. We concluded that PVP based polymers can easily interact with N, N'-disubstituted urea compounds with a trans-trans structure in the form of hexatomic rings, and the interaction strength of the hexatomic ring largely depended on the chemistry of drug molecules. This study illustrated that even a slight chemical modification on drug molecules could result in substantial difference in drug-polymer interactions, thus significantly impacting polymer selection and pharmaceutical performance of their ASD formulations.


Assuntos
Flúor/química , Polímeros/química , Sorafenibe/química , Carbanilidas/química , Gliclazida/química , Hidrogênio , Compostos de Fenilureia/química , Povidona/química , Piridinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...